Vüqar İsmayılov
Vüqar Elman oğlu İsmayılov — AMEA Riyaziyyat və Mexanika İnstitutunun Funksiyalar nəzəriyyəsi şöbəsinin müdiri, Xəzər Universitetində “Riyaziyyat və onun tətbiqləri” elmi-tədqiqat mərkəzinin direktoru[1], riyaziyyat üzrə elmlər doktoru, professor.
Vüqar İsmayılov | |
---|---|
Vüqar Elman oğlu İsmayılov | |
Doğum tarixi | |
Doğum yeri | Salyan, Azərbaycan SSR, SSRİ |
Vətəndaşlığı |
SSRİ→ Azərbaycan |
Milliyyəti | azərbaycanlı |
Elm sahəsi | riyaziyyat |
Elmi dərəcəsi | riyaziyyat üzrə elmlər doktoru |
Elmi adı | professor |
İş yerləri | Azərbaycan Milli Elmlər Akademiyası Riyaziyyat və Mexanika İnstitutu |
sites.google.com/site/vu… |
Həyatı
redaktəVüqar Elman oğlu İsmayılov 26 sentyabr 1971-ci ildə Azərbaycan Respublikasının Salyan şəhərində anadan olmuşdur. 1988-1993 cü illərdə Bakı Dövlət Universitetinin mexanika-riyaziyyat fakültəsində ali təhsil almışdır. 1995-1998-ci illərdə AMEA Riyaziyyat və Mexanika İnstitutunun əyani aspiranturasında təhsilini davam etdirmişdir.
2000-ci ildə "Dəyişənlərinin sayı az olan funksiyaların cəmi ilə yaxınlaşma" adlı namizədlik dissertasiyasını, 2014-cü ildə isə "Qeyd edilmiş istiqamətli ridge funksiyalarla yaxınlaşma" mövzusunda doktorluq dissertasiyasını müdafiə etmişdir. 1997-ci ildən 2013-cü ilə kimi AMEA Riyaziyyat və Mexanika İnstitutunun (RMİ) kiçik elmi işçisi, elmi işçisi, böyük elmi işçisi, aparıcı elmi işçisi vəzifələrini icra etmişdir.
2007 və 2008-ci illərdə Texnion - İsrail Texnologiya İnstitutunun riyaziyyat bölməsində "dəvətli alim" (visiting scholar) vəzifəsində çalışmışdır.
2013-cü ildən AMEA RMİ-nin "Funksiyalar nəzəriyyəsi" şöbəsinin müdiridir. AMEA Riyaziyyat və Mexanika İnstitutunun elmi şurasının üzvü, həmin institutun nəzdindəki doktorluq dissertasiya şurasının üzvüdür.
2014-cü ildən "Proceedings of the Institute of Mathematics and Mechanics, NAS of Azerbaijan" jurnalının məsul redaktorudur. Bundan əlavə "Azerbaijan Journal of Mathematics", "Transactions of the Institute of Mathematics and Mechanics, NAS of Azerbaijan" jurnallarının redaksiya heyətinin üzvüdür. 2017-ci ildə Vüqar İsmayılov elmi əməkdaşlıq etmək və "Funksional analiz" seminarında mühazirə oxumaq üçün Oksford Universitetinə dəvət almışdır.[2][3] 2021-ci ildə dünyanın ən böyük riyaziyyat təşkilatı olan Amerika Riyaziyyat Cəmiyyəti Vüqar İsmayılovun “Ridge functions and applications in neural networks” adlı monoqrafiyasını nəşr etmişdir.[4] Qeyd etmək lazımdır ki, həmin vaxta qədər Amerika Riyaziyyat Cəmiyyətinin nəşr etdiyi monoqrafiyaların arasında Qafqazda, hər hansı türkdilli ölkədə və ya hər hansı müsəlman ölkəsində çalışan (həmin ölkənin elm-təhsil təşkilatı adından elmi fəaliyyət göstərən) alimin kitabı yer almamışdır[5][6] (bax: monoqrafiyaların siyahısı[7]). 2024-cü ildə Xəzər Universitetindəki “Riyaziyyat və onun tətbiqləri” elmi-tədqiqat mərkəzinin direktoru vəzifəsinə seçilmişdir.[1]
Elmi nəticələrinə olan istinadlar
redaktəElmi nəticələrinə olan istinadlar 500-dən çox elmi məqalədə öz əksini tapmışdır [8]. Kembric Universitetində nəşr olunmuş "Allan Pinkus, Ridge Functions, Cambridge University Press, 2015, 218 pp." kitabında Vüqar İsmayılovun ridge funksiyalara aid aldığı bir çox teoremlər isbatları ilə birgə geniş işıqlandırılmış və təhlil edilmişdir [9]. Neyron şəbəkələr üzrə bir sıra mütəxəssislərin elmi işlərində Vüqar İsmayılovun aldığı nəticələr başlıca nəticə, heyrətamiz nəticə adlandırılmışdır.[10][11]
Elmi əsərləri haqqında məlumat
redaktə50-dən çox elmi məqalənin müəllifidir. 30-dan çox məqaləsi respublikadan kənarda dərc edilmişdir.[12]
Vüqar İsmayılovun ridge funksiyalar, xətti superpozisiyalar, kəsilməz funksiya cəbrləri və neyron şəbəkələr istiqamətlərində aldığı nəticələr “Journal of Approximation Theory”, “Journal of Mathematical Analysis and Applications”, “Studia Mathematica”, “Journal of Computational and Applied Mathematics”, “Advances in Applied Mathematics”, “Applicable Analysis”, “Numerical Functional Analysis and Optimization”, “Comptes Rendus Mathématique”, “Neural Computation”, “Neural Networks”, “Neurocomputing” kimi beynəlxalq miqyasda nüfuz qazanmış elmi jurnallarda dərc olunmuşdur.
Vüqar İsmayılovun “Ridge functions and applications in neural networks” adlı monoqrafiyası Amerika Riyaziyyat Cəmiyyəti tərəfindən nəşr edilmişdir. Monoqrafiya ridge funksiyalara və onların neyron şəbəkələr nəzəriyyəsindəki tətbiqlərinə həsr olunmuşdur. Ridge funksiyalar elmin müxtəlif sahələrində vacib rol oynayır. Məsələn, onlar xüsusi törəməli diferensial tənlikər nəzəriyyəsində, kompüter tomoqrafiyasında, statistikada geniş istifadə edilir. Ridge funksiyalar həmçinin bir sıra neyron şəbəkə modellərinin əsasını təşkil edir. Monoqrafiyada ridge funksiyaların müxtəlif nəzəri approksimativ xassələri öyrənilir. Kitabda həmçinin ümumiləşmiş ridge funksiyalar tədqiq edilir, onların xətti superpozisiyalarla və Kolmoqorovun superpozisyalar haqqında olan məşhur teoremi ilə əlaqəsi təsvir olunur. Kitabın son hissəsində birqat və ikiqat gizli laylı neyron şəbəkə modelləri müzakirə edilir. Bu hissədə alınmış nəticələr adi və ümumiləşmiş ridge funksiyaların xassələrinə əsaslanır. Baxılan neyron şəbəkə modellərinin universal approksimasiya xassələrinin yeni aspektləri aşkar edilir.
Əsas elmi məqalələrinin siyahısı
redaktə- (with A. Ismayilova) On the Kolmogorov neural networks, Neural Networks 176 (2024), Paper No. 106333, https://doi.org/10.1016/j.neunet.2024.106333
- Approximation error of single hidden layer neural networks with fixed weights, Information Processing Letters 185 (2024), Paper No. 106467, https://doi.org/10.1016/j.ipl.2023.106467
- (with A.Kh. Asgarova and A.A. Huseynli) A Chebyshev-type alternation theorem for best approximation by a sum of two algebras, Proceedings of the Edinburgh Mathematical Society (2) 66 (2023), no. 4, 971-978, https://doi.org/10.1017/S0013091523000494
- A three layer neural network can represent any multivariate function, Journal of Mathematical Analysis and Applications 523 (2023), no. 1, Paper No. 127096, https://doi.org/10.1016/j.jmaa.2023.127096
- (with R.A. Aliev and A.A. Asgarova) The double difference property for the class of locally Hölder continuous functions, Moscow Mathematical Journal 22 (2022), no. 3, 393-400, http://www.mathjournals.org/mmj/2022-022-003/2022-022-003-002.html
- (with R.A. Aliev and A.A. Asgarova) On the representation by bivariate ridge functions, Ukrainian Mathematical Journal 73 (2021), no. 5, 675-685, https://doi.org/10.1007/s11253-021-01952-9
- (with A.Kh. Asgarova) A Chebyshev-type theorem characterizing best approximation of a continuous function by elements of the sum of two algebras, (Russian) Mat. Zametki 109 (2021), no. 1, 19-26; English transl. in Mathematical Notes 109 (2021), 15-20, https://doi.org/10.1134/S0001434621010028
- (with R.A. Aliev) A representation problem for smooth sums of ridge functions, Journal of Approximation Theory 257 (2020), 105448, 13 pp, https://doi.org/10.1016/j.jat.2020.105448
- Computing the approximation error for neural networks with weights varying on fixed directions, Numerical Functional Analysis and Optimization 40 (2019), no. 12, 1395-1409, https://doi.org/10.1080/01630563.2019.1605523
- (with R.A. Aliev and A.A. Asgarova) A note on continuous sums of ridge functions, Journal of Approximation Theory 237 (2019), 210-221, https://doi.org/10.1016/j.jat.2018.09.006
- (with N. Guliyev) Approximation capability of two hidden layer feedforward neural networks with fixed weights, Neurocomputing 316 (2018), 262-269, https://doi.org/10.1016/j.neucom.2018.07.075
- (with N. Guliyev) On the approximation by single hidden layer feedforward neural networks with fixed weights, Neural Networks 98 (2018), 296-304, https://doi.org/10.1016/j.neunet.2017.12.007
- A note on the criterion for a best approximation by superpositions of functions, Studia Mathematica 240 (2018), no. 2, 193-199, https://doi.org/10.4064/sm170314-9-4
- (with A.Kh. Asgarova) On the representation by sums of algebras of continuous functions, Comptes Rendus Mathematique 355 (2017), no. 9, 949-955, https://doi.org/10.1016/j.crma.2017.09.015
- A note on the equioscillation theorem for best ridge function approximation, Expositiones Mathematicae 35 (2017), no. 3, 343-349, https://doi.org/10.1016/j.exmath.2017.05.003
- (with A.Kh. Asgarova) Diliberto–Straus algorithm for the uniform approximation by a sum of two algebras, Proceedings - Mathematical Sciences, Indian Academy of Sciences 127 (2017), no. 2, 361-374, http://dx.doi.org/10.1007/s12044-017-0337-4
- (with E. Savas) Measure theoretic results for approximation by neural networks with limited weights, Numerical Functional Analysis and Optimization 38 (2017), no. 7, 819-830, http://dx.doi.org/10.1080/01630563.2016.1254654
- Approximation by sums of ridge functions with fixed directions, (Russian) Algebra i Analiz 28 (2016), no. 6, 20–69, http://mi.mathnet.ru/eng/aa1513 English transl. in St. Petersburg Mathematical Journal 28 (2017), 741-772, https://doi.org/10.1090/spmj/1471
- On the uniqueness of representation by linear superpositions, Ukrainskii Matematicheskii Zhurnal 68 (2016), no. 12, 1620-1628; English transl. in Ukrainian Mathematical Journal 68 (2017), no. 12, 1874-1883, https://doi.org/10.1007/s11253-017-1335-5
- (with N. Guliyev) A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function, Neural Computation 28 (2016), no. 7, 1289–1304, http://dx.doi.org/10.1162/NECO_a_00849
- (with R. Aliev) On a smoothness problem in ridge function representation, Advances in Applied Mathematics 73 (2016), 154–169, http://dx.doi.org/10.1016/j.aam.2015.11.002
- Approximation by ridge functions and neural networks with a bounded number of neurons, Applicable Analysis 94 (2015), no. 11, 2245-2260, http://dx.doi.org/10.1080/00036811.2014.979809
- On the approximation by neural networks with bounded number of neurons in hidden layers, Journal of Mathematical Analysis and Applications 417 (2014), no. 2, 963–969, http://dx.doi.org/10.1016/j.jmaa.2014.03.092
- (with A. Pinkus) Interpolation on lines by ridge functions, Journal of Approximation Theory 175 (2013), 91-113, http://dx.doi.org/10.1016/j.jat.2013.07.010
- Approximation by neural networks with weights varying on a finite set of directions, Journal of Mathematical Analysis and Applications 389 (2012), Issue 1, 72-83, http://dx.doi.org/10.1016/j.jmaa.2011.11.037
- A note on the representation of continuous functions by linear superpositions, Expositiones Mathematicae 30 (2012), Issue 1, 96-101, http://dx.doi.org/10.1016/j.exmath.2011.07.005
- On the theorem of M Golomb, Proceedings - Mathematical Sciences, Indian Academy of Sciences 119 (2009), no. 1, 45-52, http://dx.doi.org/10.1007/s12044-009-0005-4
- On the representation by linear superpositions, Journal of Approximation Theory 151 (2008), Issue 2 , 113-125, http://dx.doi.org/10.1016/j.jat.2007.09.003
- On the approximation by compositions of fixed multivariate functions with univariate functions, Studia Mathematica 183 (2007), 117-126, http://dx.doi.org/10.4064/sm183-2-2
- On the best L₂ approximation by ridge functions, Applied Mathematics E-Notes, 7 (2007), 71-76, http://www.math.nthu.edu.tw/~amen/
- Representation of multivariate functions by sums of ridge functions, Journal of Mathematical Analysis and Applications 331 (2007), Issue 1, 184-190, http://dx.doi.org/10.1016/j.jmaa.2006.08.076
- Characterization of an extremal sum of ridge functions, Journal of Computational and Applied Mathematics 205 (2007), Issue 1, 105-115, http://dx.doi.org/10.1016/j.cam.2006.04.043
- Methods for computing the least deviation from the sums of functions of one variable, (Russian) Sibirskii Matematicheskii Zhurnal 47 (2006), no. 5, 1076 -1082; translation in Siberian Mathematical Journal 47 (2006), no. 5, 883–888, http://dx.doi.org/10.1007/s11202-006-0097-3
Nüfuzlu universitetlərdə edilmiş məruzələr
redaktə- Oksford Universiteti, Funksional analiz seminarı -- "Representation of C(X) as a sum of its subalgebras and some applications".
- Texnion - İsrail Texnoloji İnstitutu, Funksional analiz seminarı -- "Representation of multivariate functions by sums of ridge functions".
- Tel-Əviv Universiteti, Approksimasiya nəzəriyyəsi seminarı -- "Approximation by linear combinations of ridge functions".
Beynəlxalq jurnallarda ekspert fəaliyyəti
redaktəVüqar İsmayılov Dünya, Avropa və Yaponiya Neyron Şəbəkələr Cəmiyyətlərinin rəsmi jurnalı olan Neural Networks jurnalının dəfələrlə ekspert-rəyçisi olmuşdur.[13] Bundan əlavə o, neyron şəbəkələrə həsr olunmuş IEEE Transactions on Neural Networks and Learning Systems, Neurocomputing, Neural Processing Letters kimi nüfuzlu elmi jurnallardа rəyçilik fəaliyyəti göstərmişdir.[14]
Regional və beynəlxalq qrant müsabiqələrində iştirak
redaktə- 1 fevral, 2015 - 1 fevral, 2016 – Çoxdəyişənli funksiyaların ridge funksiyaların cəmləri şəklində göstərilməsi (EİF-2013-9(15)-46/11/1-M-04), Azərbaycan Respublikası Prezidenti yanında Elmin İnkişafı Fondunun 3-cü əsas qrant müsabiqəsi (EİF-2013-9), layihə rəhbəri.
- 15 oktyabr 2013 - 15 oktyabr 2014 – Ikiqat gizli laya malik neyron şəbəkələrin neft hasilatının optimallaşdırılması məsələlərində rolu, Azərbaycan Respublikası Dövlət Neft Şirkəti Elm Fondunun 2-ci qrant müsabiqəsi (SOCAREF2013), layihə rəhbəri.
- 1 mart, 2011 - 1 mart, 2012 – Xətti superpozisiyaların yaxınlaşdırma xassələri və neyron şəbəkələrə tətbiqlər (EIF-2010-1(1)-40/07-1), Azərbaycan Respublikası Prezidenti yanında Elmin İnkişafı Fondunun 1-ci əsas qrant müsabiqəsi (EİF-2010-1), layihə rəhbəri.
- 1 yanvar, 2007 – 1 yanvar, 2009 – Çoxdəyişənli funksiyaların ridge funksiyalarla yaxınlaşması, İNTAS beynəlxalq təşkilatının qrant müsabiqəsi, INTAS Fellowship 2006 (Ref. Nr 06-1000015-6283), layihə rəhbəri.
İstinadlar
redaktə- ↑ 1 2 “Riyaziyyat və onun tətbiqləri” elmi-tədqiqat mərkəzi
- ↑ "AZƏRTAC, Azerbaycan alimi Oksford Universitetində". 2017-03-29 tarixində arxivləşdirilib. İstifadə tarixi: 2017-04-20.
- ↑ "University of Oxford, Representation of C(X) as a sum of its subalgebras". 2022-04-07 tarixində arxivləşdirilib. İstifadə tarixi: 2017-04-06.
- ↑ Vugar Ismailov, Ridge Functions and Applications in Neural Networks Arxivləşdirilib 2022-01-22 at the Wayback Machine, American Mathematical Society, 2021
- ↑ "Azərbaycan aliminin monoqrafiyası Amerika Riyaziyyat Cəmiyyəti tərəfindən çap edilib". 2022-01-10 tarixində arxivləşdirilib. İstifadə tarixi: 2022-10-04.
- ↑ "Azərbaycan riyaziyyatçılarının mühüm nailiyyəti". 2022-01-17 tarixində arxivləşdirilib. İstifadə tarixi: 2022-10-04.
- ↑ "List of mathematical surveys and monographs". 2022-06-19 tarixində arxivləşdirilib. İstifadə tarixi: 2022-01-14.
- ↑ "Vüqar İsmayılovun elmi işlərinə istinadlar". 2018-10-03 tarixində arxivləşdirilib. İstifadə tarixi: 2016-09-05.
- ↑ Allan Pinkus, Ridge functions Arxivləşdirilib 2018-10-03 at the Wayback Machine, Cambridge University Press, 2015
- ↑ Nəticələri haqqında 1
- ↑ Nəticələri haqqında 2
- ↑ "Vüqar İsmayılov, Elmi əsərləri". 2020-10-10 tarixində arxivləşdirilib. İstifadə tarixi: 2016-09-05.
- ↑ Neural Networks jurnalında rəyçilik fəaliyyəti
- ↑ "Vüqar İsmayılovun rəyçisi olduğu elmi jurnallar". 2023-11-18 tarixində arxivləşdirilib. İstifadə tarixi: 2023-11-18.
Xarici keçidlər
redaktə Elm xadimi haqqında olan bu məqalə bu məqalə qaralama halındadır. Məqaləni redaktə edərək Vikipediyanı zənginləşdirin. |