Vladimir Levenşteyn

Vladimir İosifoviç Levenşteyn (rus. Влади́мир Ио́сифович Левенште́йн; 20 may 1935, Moskva6 sentyabr 2017[1], Moskva) — informasiya nəzəriyyəsi, korreksiya kodları və kombinator dizayn sahəsində tədqiqatlar aparmış rus və sovet alimi.[2] O, həmçinin 1965-ci ildə hazırladığı Levenşteyn məsafəsi və Levenşteyn alqoritmi ilə tanınır.

Vladimir Levenşteyn
Doğum tarixi 20 may 1935(1935-05-20)
Doğum yeri
Vəfat tarixi 6 sentyabr 2017(2017-09-06)[1] (82 yaşında)
Vəfat yeri
Elm sahəsi tətbiqi riyaziyyat
Elmi dərəcəsi
Təhsili

1958-ci ildə Moskva Dövlət Universitetinin riyaziyyat və mexanika fakültəsini bitirib və o vaxtdan Moskvada Keldış adına Tətbiqi Riyaziyyat İnstitutunda işləyib. IEEE İnformasiya Nəzəriyyəsi Cəmiyyətinin üzvü idi.

O, 2006-cı ildə Levenşteyn məsafəsi də daxil olmaqla korreksiya kodları və informasiya nəzəriyyəsinə verdiyi töhfələrə görə Riçard Hemminq medalına layiq görülüb.[3]

Həyatı

redaktə

Levenşteyn 1958-ci ildə Moskva Dövlət Universitetinin mexanika-riyaziyyat fakültəsində oxuyub. Bitirdikdən sonra M.V.Keldış Tətbiqi Riyaziyyat İnstitutunda işləyib.

Əsərləri

redaktə
  • Levenshtein, V. I., "Binary codes capable of correcting deletions, insertions, and reversals.", Doklady Akademii Nauk SSSR, 163 (4), 1965: 845–848
  • Delsarte, P.; Levenshtein, V. I., "Association schemes and coding theory", IEEE Transactions on Information Theory, 44 (6), 1998: 2477–2504, doi:10.1109/18.720545
  • V.I. Levenshtein, "On a class of systematic codes", Doklady Akademii Nauk SSSR, 131 (5), 1960: 1011–1014
  • V.I. Levenshtein, Application of Hadamard matrices to a problem in coding theory, Problems of Cybernetics, vol. 5, GIFML, Moscow, 1961, 125–136.
  • V.I. Levenshtein, "Certain properties of code systems", Doklady Akademii Nauk SSSR, 140 (6), 1961: 1274–1277
  • V.I. Levenshtein, "Self-adaptive automata for decoding messages", Doklady Akademii Nauk SSSR, 141 (6), 1961: 1320–1323
  • V.I. Levenshtein, "On the inversion of finite automata", Doklady Akademii Nauk SSSR, 147 (6), 1962: 1300–1303
  • V.I. Levenshtein, On the stable extension of finite automata, Problems of Cybernetics, vol. 10, GIFML, Moscow, 1963, 281–286.
  • V.I. Levenshtein, On some coding systems and self-tuning machines for decoding messages, Problems of Cybernetics, vol. 11, GIFML, Moscow, 1964, 63–121.
  • V.I. Levenshtein, Decoding automata invariant with respect to the initial state, Problems of Cybernetics, vol. 12, GIFML, Moscow, 1964, 125–136.
  • V.I. Levenshtein, "Binary codes with correction for deletions and insertions of the symbol 1", Problemy Peredachi Informatsii, 1 (1), 1965: 12–25
  • V.I. Levenshtein, "On a Method of Solving the Problem of Synchronizing a Chain of Automata in Minimal Time", Problemy Peredachi Informatsii, 1 (4), 1965: 20–32
  • V.I. Levenshtein, Binary codes providing synchronization and correction of errors, Abstracts of short scientific reports of the International Congress of Mathematicians, Section 13, Moscow, 1966, 24.
  • V.I. Levenshtein, Asymptotically optimal binary code with correction of occurrences of one or two adjacent characters, Problems of Cybernetics, vol. 19, Science, Moscow, 1967, 293–298.
  • V.I. Levenshtein, On the redundancy and deceleration of separable coding of natural numbers, Problems of Cybernetics, vol. 20, Nauka, Moscow, 1968, 173–179.
  • V.I. Levenshtein, "On the Synchronization of Two-Way Networks of Automata", Problemy Peredachi Informatsii, 4 (4), 1968: 49–62
  • V.I. Levenshtein, "Bounds for Codes Ensuring Error Correction and Synchronization", Problemy Peredachi Informatsii, 5 (2), 1969: 3–13
  • V.I. Levenshtein, "On the Maximum Number of Words in Codes without Overlapping", Problemy Peredachi Informatsii, 6 (4), 1970: 88–90
  • V.I. Levenshtein, "One Method of Constructing Quasilinear Codes Providing Synchronization in the Presence of Errors", Problemy Peredachi Informatsii, 7 (3), 1971: 30–40
  • V.I. Levenshtein, "Upper-Bound Estimates for Fixed-Weight Codes", Problemy Peredachi Informatsii, 7 (4), 1971: 3–12
  • V.I. Levenshtein, "Minimum Redundancy of Binary Error-Correcting Codes", Problemy Peredachi Informatsii, 10 (2), 1974: 26–42
  • V.I. Levenshtein, Elements of coding theory, In the book. Discrete mathematics and mathematical questions of cybernetics, Nauka, Moscow, 1974, 207–305.
  • V.I. Levenshtein, "Maximal packing density of n-dimensional Euclidean space with equal balls", Matematicheskie Zametki, 18 (2), 1975: 301–311.
  • VI Levenshtein, Methods for obtaining bounds in metric problems of coding theory, Proc. of the 1975 IEEE-USSR Joint Workshop on Information Theory, New York, 1976, 126–143.
  • V.I. Levenshtein, "Bounds on the Probability of Undetected Error", Problemy Peredachi Informacii, 13 (1), 1977: 3–18
  • G.A. Kabatiansky; V.I. Levenshtein, "On Bounds for Packings on a Sphere and in Space", Problemy Peredachi Informatsii, 14 (1), 1978: 3–25
  • V.I. Levenshtein, On the choice of polynomials for obtaining boundaries in packaging problems, VII All-Union Conference on the Theory of Coding and Information Transfer, Part II, Moscow - Vilnius, 1978, 103–108.
  • V.I. Levenshtein, "On boundaries for packings in n-dimensional Euclidean space", Doklady Akademii Nauk SSSR, 245 (6), 1979: 1299–1303
  • V.I. Levenshtein, "Bounds of the maximal capacity of a code with a limited scalar product modulus", Doklady Akademii Nauk SSSR, 263 (6), 1982: 1303–1308
  • V.I. Levenshtein, Borders for packaging of metric spaces and some of their applications, Problems of cybernetics, vol. 40, Science, Moscow, 1983, 43–110.
  • VI Levenshtein, Packing of polynomial metric spaces, Third International Workshop on Information Theory, Convolutional codes; multi-user communication, Sochi, 1987, 271–274.
  • V.I. Levenshtein, "On the Straight-Line Bound for the Undetected Error Exponent", Problemy Peredachi Informatsii, 25 (1), 1989: 33–37
  • VI Levenshtein, Perfect deletion-correcting codes as combinatorial designs, Proc. of the Second International Workshop: Algebraic and Combinatorial Coding Theory, Leningrad, USSR, 1990, 137–140.
  • V.I. Levenshtein, "Perfect codes in the metric of deletions and insertions", Diskretnaya Matematika, 3 (1), 1991: 3–20.
  • VI Levenshtein, Designs as maximum codes in polynomial metric spaces, Acta Applicandae Mathematicae, vol. 29 (1992), 1-82.
  • VI Levenshtein, Bounds for self-complementary codes and their applications, in Eurocode-92. CISM Courses and Lectures, vol. 339. Springer-Verlag, Wien-New-York, 1993, 159–171.
  • VI Levenshtein, Bounds for codes as solutions of extremum problems for systems of orthogonal polynomials, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lectures Notes in Computer Science, vol. 673, Springer-Verlag, 1993, 25–42.
  • V.I. Levenshtein; A.J.H. Vinck, "Perfect (d,k)-codes capable of correcting single peak-shifts", IEEE Transactions on Information Theory, IEEE, 39 (2), 1993: 656–662, doi:10.1109/18.212300
  • V.I. Levenshtein, "Packing and Decomposition Problems for Polynomial Association Schemes", European Journal of Combinatorics, 14 (5), 1993: 461–477, doi:10.1006/eujc.1993.1049
  • T. Ericson and VI Levenshtein, Superimposed codes in the Hamming space, IEEE Trans. Inform. Theory, vol. 40, no. 6 (1994), 1882–1893.
  • G. Fasekas and VI Levenshtein, On upper bounds for code distance and covering radius of designs in polynomial metric spaces, J. Combin. Th. Ser. A, vol. 70, no. 2 (1995), 267–288.
  • T. Helleseth, T. Klove, VI Levenshtein, and O. Ytrehus, Bounds on the minimum support weights, IEEE Trans. Inform. Theory, vol. 41, no. 2 (1995), 432–440.
  • VI Levenshtein, Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces, IEEE Trans. Inform. Theory, vol. 41, no. 5 (1995), 1303–1321.
  • V.I. Levenshtein, "A Simple Proof of the Basic Inequalities for the Fundamental Parameters of Codes in Polynomial Relationship Schemes", Problemy Peredachi Informatsii, 31 (4), 1995: 37–50.
  • VI Levenshtein, Reconstructing binary sequences by the minimum number of their subsequences or supersequences of a given length. Proceedings of Fifth Intern. Workshop on Algebr. and Combin. Coding Theory, Sozopol, Bulgaria, June 1–7, 1996, 176–183.
  • VI Levenshtein, Lower bounds on crosscorrelation of codes. Proceedings of IEEE Fourth Intern. Symp on Spread Spectrum Techniques and Appl., Mainz, Germany, September 22–25, 1996, 657–661.
  • VI Levenshtein, Split orthogonal arrays and maximum independent resilient systems of functions, Designs, Codes and Cryptography, vol. 12, no. 2 (1997), 131–160.
  • T. Helleseth, T. Klove, and VI Levenshtein, On the information function of an error-correcting code, IEEE Trans. Inform. Theory, vol. 43, no. 2 (1997), pp. 549–557.
  • V.I. Levenshtein, "Reconstruction of objects from the minimum number of distorted patterns", Doklady Akademii Nauk SSSR, 354 (5), 1997: 593–596
  • P. Delsarte and VI Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, vol. 44, no. 6 (1998), 2477–2504.
  • VI Levenshtein, Universal bounds for codes and designs, in Handbook of Coding Theory, VS Pless and WC Huffman, Eds., Amsterdam: Elsevier, vol. 1, 499–648, 1998.
  • VI Levenshtein, On designs in compact metric spaces and a universal bound on their size, Discrete Mathematics, vol. 192 (1998), 251–271.
  • VI Levenshtein, On the maximum T-wise independent systems of Boolean functions, Workshop on Coding and Cryptography, Paris, France, 1999, 367–370.
  • VI Levenshtein, Equivalence of Delsarte's bounds for codes and designs in symmetric association schemes and some applications, Discrete Mathematics, vol. 197/198 (1999), 515–536.
  • VI Levenshtein, New lower bounds on aperiodic crosscorrelation of binary codes, IEEE Trans. Inform. Theory, vol. 45, no. 1 (1999), 284–288.
  • IN AND. Levenshtein, On designs in continuous unit cubes, Proceedings of the IV International Conference: Discrete models in the theory of control systems, Moscow State University, MAKS Press, 2000, 62–64.
  • VI Levenshtein, Efficient reconstruction of sequences, IEEE Trans. Inform. Theory, vol. 47, no. 1 (2001), 2-22.
  • VI Levenshtein, Efficient reconstruction of sequences from their subsequences or supersequences, Journal of Combin. Theory, Ser. A, vol. 93, no. 2 (2001), 310–332.
  • T. Berger and VI Levenshtein, Asymptotical efficiency of two-stage testing, IEEE Trans. Inform. Theory, vol. 48, no. 7 (2002), 1741–1749.
  • T. Berger and VI Levenshtein, Application of cover-free codes and combinatorial designs to two-stage testing, Discrete Applied Mathematics.
  • T. Helleseth, T. Klove and VI Levenshtein, Hypercubic 4 and 5-designs from double-error-correcting BCH codes, Designs, Codes and Cryptography.
  • VI Levenshtein, A universal bound for a covering in regular posets and its application to pool testing, Discrete Mathematics.
  • Helleseth, Tor; Kløve, Torleiv; Levenshtein, Vladimir, "Error-correction capability of binary linear codes", IEEE Transactions on Information Theory, IEEE, 51 (4), 2005: 1408–1423, doi:10.1109/TIT.2005.844080
  • VI Levenshtein, Combinatorial problems motivated by comma-free codes, Discrete Mathematics.

İstinadlar

redaktə
  1. 1 2 https://nplus1.ru/material/2017/09/25/vladimir-levenshtein.
  2. "Код без ошибок". nplus1.ru (rus). 2020-09-23 tarixində arxivləşdirilib. İstifadə tarixi: 2017-10-21.
  3. "IEEE Richard W. Hamming Medal Recipients" (PDF). IEEE. October 17, 2012 tarixində arxivləşdirilib (PDF). İstifadə tarixi: May 29, 2011.

Xarici keçidlər

redaktə