Optoelektronika: Redaktələr arasındakı fərq

Silinən məzmun Əlavə edilmiş məzmun
Redaktənin izahı yoxdur
Redaktənin izahı yoxdur
Sətir 4:
 
== Tarixi ==
Bir çox hallarda fotoelektronikanınoptoelektronikanın yaranması tarixini 1800‐cü ildən – Qerşelin infraqırmızı şüaları kəşf etməsindən hesablayırlar. Əgər məsələyə belə yanaşsaq, yəni optoelektronikanı işıq şüalarının kəşfi ilə bağlasaq, onda daha da qədimə getmək mümkündür. Məsələ burasındadır ki, Bibliyada göstərilir ki, Allah Adam və Həvvanı Dünyanı yaratdıqdan 6 gün sonra yaratdığı halda, işığı elə birinci gün
yaradıb. O, işığı görəndə sevinclə işıq çox gözəldir deyib və onu zülmətdən ayırıb. Əslində isə, bərk cisim optoelektronikası işığın fotoelektrik qəbuledicilərinin kəşfi ilə başlayıb. Düzdür, Qersel öz tədqiqatlarında şüa qeyd edicilərindən istifadə edib, lakin bu qeydedicilər optik siqnalı elektrik siqnalına çevirən fotoelektrik cihazları deyil, termocütlər olub. Optoelektronikanın yaranmasının bir‐birindən yarım əsr fərqlənən iki tarixi var. Biri, 1821‐ci ildə Zeyebekin termoelektrik hadisəsini müşahidə etməsi, daha doğrusu istilik
qəbuledicisinin (termocütün) hazırlaması ilə bağlıdır. Lakin, həmin qəbuledicilərin həssaslığı çox kiçik idi. Bu qüsuru aradan qaldırmaq üçün əvvəlcə Nobili tərəfindən bir neçə termocütü ardıcıl birləşdirmək və 1830‐cu ildə isə daha effektiv materiallardan (vismut sürmədən) istifadə etmək təklifi olunur. 1834‐cü ildə Melloni belə termocütlərdən istilik şüalanmasını qeyd etmək üçün istifadə etmişdir. Digər istilik qəbuledicisi – bolometr isə 1857‐ci ildə Şvanberq tərəfindən hazırlanıb və bir qəbuledici kimi ilk dəfə Lanqel tərəfindən 1881‐ci ildə tətbiq edilib. Görünür məhz buna görə də, əksər hallarda bolometrin yaranmasını sonuncunun adı ilə bağlayırlar. Daha 15 ildən sonra isə Markoni və Popov elektromaqnit şüalanmasının məsafədən qəbulu üçün belə qeydedicilərdən istifadə etdilər. Lakin bu halda şüalanma
Sətir 13:
məqsədləri üçün istifadə olunmuşdur. Həmin illərin ən mühüm və əhəmiyyətli nailiyyətlərindən biri də qurğuşunsulfidin (PbS) tədqiqinə dair aparılan işlərdir. Boze 1904‐cü ildə ilk dəfə bu materialda (qalenitin təbii polikristallarında) daxili fotoeffekt hadisəsini müşahidə etmiş, 1933‐cü ildə isə Kutçer həmin materialın fotohəssaslığının infraqırmızı sərhədini (~3mkm) tapmışdır.
 
Elektronikanın digər sahələrində olduğu kimi, fotoelektronikadaoptoelektronikada da ideyalar əksər hallarda öz eksperimental tədqiq və praktiki tətbiq vaxtını xeyli qabaqlayır. Belə ki, optoelektronika sahəsində hələ XIX əsrdə bir sıra ideyalar meydana gəlsə də, diqqəti cəlb edən kəşflər edilsə də infraqırmızı texnikanın müxtəlif sahələrdə, o cümlədən hərbdə öz layiqli və dəyərli yerini tutması üçün əlli ilə qədər bir vaxt lazım gəldi. XX əsrin 20‐30‐cu illərində çoxlu sayda, həm də keyfiyyətcə bir‐birindən fərqlənən, lampalı sxemlər, o cümlədən mənfi
əks rabitəli (Blev, 1927) və küyə qarşı korreksiya etmək xassəsinə malik (Braude, 1933) gücləndiricilər işlənib hazırlandı. Onların sxemotexniki prinsipləri hətta müasir fotoqəbuledici qurğularda tətbiq olunur. İllər ötdükcə, radiodalğalar radioverilişdə (1920), telefon siqnallarının ötürülməsində (1929), naviqasiya, rabitə, pelenqasiya, kontaktsız partlayışlar (keçən əsrin 30‐cu illəri) və s.
yeni sahələrdə istifadə olundu. Göründüyü kimi, elektromaqnit şüalanmasından istifadə hesabına artıq texnikanın yeni istiqamətləri müəyyənləşirdi. Elektromaqnit dalğalarının uzunluğu müntəzəm olaraq 300‐500 m‐dən (1920) ifrat yüksək tezliklər (İYT) diapazonuna
Sətir 38:
Optoelektronika üçün çox yararlı olan çoxsaylı heterostrukturlar meydana gəlmişdi. Qeyd etmək lazımdır ki, həmin dövrdə heterostrukturların tədqiqi, onların əsasında lazerlərin yaradılması sahəsində J.İ.Alfyorov və X.Kremer görkəmli nailiyyətlər əldə etdilər. Bu işlərə görə onlar 2000‐ci ildə Nobel mükafatına layiq görüldülər. 1970‐ci illərdən sonra heterostrukturlarla işin cəbhəsi daha
da genişləndi. Kvant ölçü strukturlarından optoelektronika üçün əlamətdar olan 1970‐ci illərdə prinsipcə yeni olan daha bir istiqamətin
– kvant ölçü strukturların fundamenti qoyuldu. Bu strukturlar tunel diodunun yaradıcısı, Nobel mükafatı laureatı L.Esaki ilə R.Tsa tərəfindən təklif olunmuşdu. Həm xronologiyasına, həm ideologiyasına görə kvant ölçü strukturlarını bərk cisim elektronikasında və fotoelektronikadaoptoelektronikada varizon və heterostrukturlardan sonra (ardıcıl) gələn növbəti mərhələ saymaq olar. Bu ixtiranın nəticəsində cihaz hazırlayanlar yarımkeçiricinin zona quruluşunu formalaşdırmaq sahəsində yeni bir alət əldə etmiş oldular. Bu alət – molekulyar‐şüa
epitaksiyasının (MŞE) köməyi ilə alınmış lay və oblastların ölçüsündən ibarət idi. Adətən yarımkeçirici strukturlarda adi
layların ölçüləri (d ≥ 50 nm) monoatom layının (d ~ 0 ⋅ 5 nm) ölçülərindən ən azı iki tərtib böyük olur. Bu səbəbdən də həmin layların xassələri həcmi kristalların xassələrindən fərqlənmir. Lakin elə kvant ölçü strukturu termininin adından görünür ki, bu strukturlarda çox nazik (~ 0 ⋅ 5 ÷ 5 nm), xarakterik kvant uzunluğu (de Broyl dalğasının uzunluğu) ilə müqayisə olunan, laylar formalaşır. Sözsüz ki, bu layların fiziki xassələri və zona quruluşları artıq monokristallik materialınkından fərqlənəcək. Necə ki, təklənmiş atomunku ilə