Lazer: Redaktələr arasındakı fərq

Silinən məzmun Əlavə edilmiş məzmun
Mətndəki bəzi sözlər sadələşdirildi.
kRedaktənin izahı yoxdur
Sətir 2:
'''Lazer''' – ([[İngilis dili|ing.]] '''''LASER''''' – "''Light Amplification by Stimulated Emission of Radiation''" – "Məcburi şüalanma ilə işığın gücləndirilməsi"). Bu söz [[1957]]-ci ildə Qordon Quld (''Gordon Gould'' ) tərəfindən istifadəyə daxil edilmişdir. Fiziki mahiyyəti məcburi şüalanmanın kvant mexaniki effektindən istifadə etməklə koherent işıq axınının alınmasından ibarətdir.
 
Lazer şüaları sabit amplitudalı fasiləsiz və ya olduqca böyük gücə sahib olan impuls xarakterli ola bilər. Bir çox konstruksiyalarda lazer qurğusunun elementləri başqa mənbədən yayılan şüaları optik gücləndirmə vasitəsi kimi istifadə edilir. Gücləndirilmiş siqnal dalğa uzunluğuna (tezliyinə), fazasına və polyarizasiyasına görə ilkin siqnalla üst-üstə düşür. Bu rabitə qurğuları üçün çox vacibdir. Adi işıq mənbələri, məsələn, közərmə lampası işığı müxtəlif istiqamətlərdə, böyük dalğa diapazonunda səpələyir. Onların çoxu koherent deyillər və bundan əlavə qeyri-lazer mənbələrdən buraxılan işıq şüaları dəqiq polyarizasiyaya da malik deyil. Lazerdə isə bunların əksinə olaraq monoxromatik dağılma bucağı kiçik olan çox dar, koherent və güclü şüalanma baş verir.
 
== Quruluşu ==
Lazer əsasən 3 əsas elementdən ibarətdir:
* Enerji mənbəyi
* İşçi gövdə
Sətir 24:
* '''Maye''' – məsələn, lazer rəngləyicilər. Bunlar kimyəvi rəngləyicilərin həll olunması üçün tətbiq olunan etanol, metanol, etilenqlikol kimi maddələrdən ibarətdir. Molekulun konfiqurasiyası dalğa uzunluğuna təsir edir.
* '''Qaz''' – məsələn, helium-neon lazerlərində istifadə edilən karbon, arqon, kripton qaz qarışıqları. Belə lazer çox vaxt elektrik zərrəcikləri ilə yüklənirlər. Bu lazerlərin kimyəvi üsulla alınan qazlarla işləyən xüsusi növü vardır. Yükləmə aktiv mühitdə gedən kimyəvi reaksiya nəticəsində baş verir. Qaz reaksiyadan sonra tam istifadə edilir və bununla bir dəfə istifadə oluna bilir. Kimyəvi lazerlər yüksək güclü lazerlərə aiddir və yalnız hərbi məqsədlər üçün tətbiq edilir. Misal kimi HCl-Lazer və İod-Lazerini göstərmək olar.
* '''Bərk cismlər''' – məsələn, kristal və ya şüşələr. Bütöv material adətən xrom, neodium, erbium və titanla örtülürlər. Tipik istifadə edilən kristallara aluminium-ittrium qranatı (YAG), litium-ittrium ftorid (YLF), sapfir və silikat şüşəsidir. Ən geniş yayılmışı Nd: YAG, titan-sapfir, xrom-sapfir, legirlənmiş xrom stronsium-litium-aluminium (Cr:LiSAF), Er:YLF və Nd:glass(neodiumli şüşə)-dir.
* '''Yarımkeçiricilər''' – Bunlar daxilində elektronların enerji dəyişmələrinin şüalanma ilə müşayiət olunmasıyla xarakterizə olunurlar. Yarımkeçirici lazerlər çox yığcamdır. Onlardan məişətdə geniş istifadə edilir. Onlar elektriklə yüklənən lazer diodlarıdır. Lazer diodlarının gücü yaxşı şüalanmada bir vattdan azdır. Multimod diodları pis şüalanmada 10 V-dan aşağı güc tələb edirlər. Bir çip (təx. 0,1 × 1 × 10 mm) daxilində cəmlənmiş lazer diodları bir-biri ilə inteqrasiya oluna bilirlər. Müxtəlif dalğa uzunluğuna, qütbləşdirmə qurğularına malik diodları keyfiyyət itirməsi olmadan bir-biri ilə birləşdirmək olur. Beləliklə 10 kV-dan çox güc alınır.
 
Sətir 30:
 
== Tarixi ==
[[1917]]-ci ildə [[Albert Eynşteyn]] absorbsiyanınişığın absorbsiyasının əksi olaraq işığın məcburi şüalanmasınışüalanmanı izah edir. Uzun müddət bu effektin işıq sahəsinin gücləndirilməsi üçün tətbiq edilməsi müəmmalı qalmışdır. Uzun tədqiqatlardan sonra yalnız [[1960]]-cı ildə [[Teodor Mayman]] Hyuz şirkətinin laboratoriyasında ([[Kaliforniya]] ştatı, [[Amerika Birləşmiş Ştatları|ABŞ]]) [[Kolumbiya]] [[Universitet]]i və BELL firmasının əməkdaşları ilə birlikdə ilk işləyən lazer düzəltmişdir. Mayman 694 nanometr dalğa uzunluğuna malik qırmızı işıq verən rubin içlikdən istifadə etmişdir. Eyni vaxtda azərbaycan əsilli iranlı fizik Əli Cavan qaz lazerini nümayiş etdirir. Sonralar bu işinə görə [[Albert Eynşteyn]] mükafatına layiq görülür.
 
1980-ci illərdə [[yarımkeçirici]]lər texnologiyası uzunömürlü və yüksək keyfiyyətli lazer diodlarının hazırlanmasına imkan yaradır. Bunlar kiçik güc ilə [[CD]] və [[DVD]] oxuyucularında və ya optik lifli verilənlər şəbəkəsində tətbiq oluna bilirlər. Onlar getdikcə inkişaf edərək kVt sahəsinə yaxınlaşaraq nasos enerji mənbəsi kimi aşağı gücə malik lampa həyəcanlandırıcıları əvəz etməyə başlamışlar.