Ədədlər nəzəriyyəsi: Redaktələr arasındakı fərq

Silinən məzmun Əlavə edilmiş məzmun
Sətir 62:
Fermanın Diofant tənliklərinin həlli və tam ədədlərin bölünməsi ilə bağlı əsərlərində ədədlər nəzəriyyəsi daha da inkişaf etdirildi. Xüsusilə, Ferma, Fermanın kiçik teoremi adlandırılan belə bir teorem formalaşdırdı ki, istənilən sadə <math>p</math> və tam <math>a</math> ədədi üçün <math>a^{p}-a</math> ədədi <math>p</math>-yə bölünür. Bundan başqa, o, Fermanın böyük və ya son teoremi adlandırılan <math>a^n+b^n=c^n</math> Diofant tənliyinin tam ədədlərdə həll olunmazlığı haqqında teoremi formalaşdırdı<ref name=":14">Number Theory, page 3 (англ.). Encyclopædia Britannica. Дата обращения: 6 июня 2012. Архивировано 22 июня 2012 года.</ref>. XVIII əsrin əvvəllərində Eyler kiçik teoremin ümumiləşdirməsi və xüsusi hallar üçün böyük teoremin isbatı ilə məşğul olmuşdur. O, həmçinin ədədlər nəzəriyyəsində problemləri həll etmək üçün, funksiyaların generasiyası üsulunu, Eyler eyniliyini, habelə sadə ədədlərin əlavə edilməsi ilə bağlı məsələləri formalaşdıraraq güclü riyazi analiz aparatından istifadə etməyə başladı<ref name=":4">теория чисел // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969–1978 </ref>.
 
XIX əsrdə bir çox görkəmli alimlər ədədlər nəzəriyyəsi üzərində işləmişlər. [[Karl Fridrix Qauss|Qauss]] müqayisələr nəzəriyyəsini yaratdı, onun köməyi ilə sadə ədədlər haqqında bir sıra teoremlər isbat edildi, kvadratik çıxıqların və qeyri-çıxıqların xassələri, o cümlədən kvadrat qarşılıqlılıq qanunu öyrənildi<ref name=":15">Number Theory, page 4 (англ.). Encyclopædia Britannica. Дата обращения: 6 июня 2012. Архивировано 22 июня 2012 года.</ref>. Bu qanunun isbatının tapılması üçün Qauss, sonradan triqonometrik cəmlərə ümumiləşdirilmiş müəyyən tip sonlu sıraları nəzərdən keçirdi. Eylerin işlərini inkişaf etdirərək, Qauss və [[Peter Qustav Lejyon Dirixle|Dirixle]] kvadratik formalar nəzəriyyəsini yaratdılar. Bundan əlavə, onlar müstəvidə oblastların tam nöqtələrinin sayına dair bir sıra məsələlər tərtib etdilər ki, onların xüsusi həlləri <math>nk+l</math> şəklində silsilələrdə sadə nöqtələrin sayının sonsuzluğu haqqında ümumi teoremi isbat etməyə imkan verdi, burada <math>k</math> və <math>l</math> qarşılıqlı sadə ədədlərdir<ref name=":15">Number Theory, page 4 (англ.). Encyclopædia Britannica. Дата обращения: 6 июня 2012. Архивировано 22 июня 2012 года.</ref>. Sadə ədədlərin paylanmasının tədqiqini Çebışev davam etdirdi<ref name=":16">Number Theory, page 5 (англ.). Encyclopædia Britannica. Дата обращения: 6 июня 2012. Архивировано 22 июня 2012 года </ref>, o, Evklid teoremindən, sadə ədədlərin sayının sonsuzluğa yaxınlaşması qanununu, daha dəqiq göstərdi, <math>(x,2x),x\geq 2</math> intervalında sadə ədədin varlığı haqqında Bertran fərziyyəsini isbat etdi, və eyni zamanda qonşu sadə ədədlər arasındakı fərqin ən kiçik qiymətinin yuxarıdan qiymətləndirilməsi məsələsini qoydu (əkiz sadə ədədlər haqqında məsələnin genişlənməsi)<ref name=":4">теория чисел // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969–1978 </ref>.
 
XX əsrin əvvəllərində A. N. Korkin, Y. İ. Zolotarev və A. A. Markov kvadratik formalar nəzəriyyəsi üzərində işləri davam etdirdilər. Korkin və Zolotarev müsbət kvaternar kvadratik formanın dəyişənləri haqqında teoremi isbat etmiş, Markov isə müsbət determinantın binar kvadratik formalarının minimumlarını tədqiq etmişdir. Müstəvi oblastlarındakı tam nöqtələr üçün Dirixle tərəfindən tərtib edilmiş düsturlar G. F. Voronoyun əsərlərində inkişaf etdirildi, o, 1903-cü ildə qalıq həddin tərtibini müəyyən etdi. 1906-cı ildə metod V.Serpinski tərəfindən uğurla dairədə tam ədədlərin sayı haqqında Qauss məsələsinə gətirildi<ref name=":4">теория чисел // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969–1978 </ref>.