Diofant tənliyi

Diofant tənliyi — adını e.ə III əsrdə yaşadığı təxmin edilən Qədim yunan riyaziyyatçısı Diofantdan alan dəyişənləri və əmsalları tam ədəd olan tənlik. Diofant "Arifmetika" adlı yalnız 6 cildi günümüzə gəlib-çatan əsərində 130 tənliyi və onların həllini qeyd etmişdir.

Xətti Diofant tənlikləriRedaktə

Sadə xətti tənlikdə nümunələr aşağıdakı kimi verilə bilər;

  • Nümunə 1.1
 

Bu bərabərlikdə hər bir x qiyməti üçün tək bir y həlli var. ( ). Bu bərabərliyin həll çoxluğu;

(X, 1 − X) şəklindədir hər X ∈ Z üçün
  • Nümunə 1.2
 

Bu dəfə x-in hər hansı bir tam ədəd ola bilməyəcəyi, lakin sadəcə tək ədəd ola biləcəyi görülür ( ). Bu bərabərliyin həll çoxluğu;

(1-2y, y) şəklindədir hər y ∈ Z üçün
  • Nümunə 1.3
 

Bu bərabərliyin həlli boş çoxluqdur. Hər    tam ədəd seçimi üçün bu tənliyin sol tərəfi həmişə 3-cü qüvvət olduğu halda sağ tərəfi heç vaxt 3-cü qüvvətdən ola bilməz.

Ümumi xətti Diofant tənliyiRedaktə

 
şəklindədir. Burada a, b və c tam əmsallar    tam ədəd dəyişənləridir.

Digər nümunələrRedaktə

Pifaqor teoremiRedaktə

Ümumi bir nümunə Pifaqor tənliyidir (Bax: Pifaqor teoremi)

  • Nümunə 2.1.1
 
Burada   tam ədədləri düzbucaqlı üçbucağın kənar tərəflərini təmsil etdiyi üçün Pifaqor üçlüyü olaraq da adlandırılır.

Ferma teoremiRedaktə

  Əsas məqalə: Böyük Ferma teoremi
  • Nümunə 2.2.1
  , n > 2
Bu bərabərliyin   tam ədəd dəyişənlərindən ən azı birinin 0 olması istisnasında tənliyin həlli yoxdur.

Pell teoremiRedaktə

Bu tənlik adını XVII əsrdə yaşamış ingilis riyaziyyatçısı Cohn Pelldən almışdır.

  • Nümunə 2.3.1
 , n>0 və n tam ədədləri tam kvadrat deyil.

İstinadlarRedaktə

MənbəRedaktə

Həmçinin baxRedaktə