Romb (yun. ρομβος) — bütün tərəfləri bərabər olan paraleloqramdır. Bütün bucaqları düz bucaq olan romba kvadrat deyilir.

Rombun dioqanalları və tərəfi arasındakı əlaqə düsturu:

d² + d² = 4a²

Diaqonalları

redaktə
  • Diaqonalların uzunluqları fərqlidir;
  • Diaqonallar kəsişmə nöqtəsində yarıya bölünür;
  • Diaqonalları qarşılıqlı perpendikulyardır;
  • Diaqonalı uyğun təpə nöqtələrində yerləşən bucaqların tənbölənidir;
  • Hər bir diaqonalı rombu iki bərabəryanlı üçbucağa ayırır.

Xassələri

redaktə
  • Bütün tərəfləri bərabərdir.
  • Qarşı tərəfləri bir-birinə paraleldir.
  • Qarşı bucaqları bərabərdir.
  • Birtərəfli bucaqlarının cəmi 180°-dir.

Perimetri

redaktə
  •  olduğundan P=4a. Eyni düstur kvadrat üçün də doğrudur.

Sahəsi

redaktə

1)Rombun sahəsi diaqonallarının hasilinin yarısına bərabərdir.

2) Rombun sahəsi tərəfinin kvadratı ilə bu tərəflər arasında qalan bucağın sinusunun hasilinə bərabərdir.

 

  • ID = IB = d
  • IC = IA = c

 

3) Rombun sahəsi tərəfi ilə hündürlüyünün hasilinə bərabərdir.

S=ah

İstinadlar

redaktə

Xarici keçidlər

redaktə