Matris – düzbucaqlı sxemdə yerləşən aij elementləri (ədədlər, funksiyalar, üzərində cəbri əməllər aparıla bilən başqa kəmiyyətlər) sistemi. Onun m sətri və n sütunu varsa, deyilir ki, (mxn)–ölçülü matris verilmişdir. Məsələn,

m sətir və n sütundan ibarət m x n ölçülü matris. Matrisin hər bir elementi çox vaxt ikiqat aşağı indekslə işarələnir. Məsələn, a2,1 matrisin ikinci sətir və birinci sütunundakı elementi göstərir.

matrisi iki sətirə və üç sütuna malik 2x3 ölçülü matrisdir.

Matrislər əlavə spesifikasiyalar olmadan xətti çevirmələri təsvir edir və xətti cəbrdə aşkar hesablamalar aparmağa imkan verir. Buna görə də matrislərin tədqiqi xətti cəbrin böyük bir bölümünü təşkil edir və abstrakt xətti cəbrin əksər xassə və əməlləri matrislərlə ifadə oluna bilir. Məsələn, matrislərin hasili xətti çevirmələrin kompozisiyasını ifadə edir.

Matrislərin hamısı xətti cəbrlə əlaqəli deyil. Bu, xüsusən qraf nəzəriyyəsində, insident və qonşuluq matrislərində belədir.

Bu məqalədə xətti cəbrlə əlaqəli matrislərə diqqət yetirilir və əgər digər hallar göstərilməyibsə, bütün matrislər xətti çevirmələri ifadə edir

Eyni sayda sətir və sütuna malik matrislər (kvadrat matrislər) matrislər nəzəriyyəsində böyük rol oynayır. Verilmiş ölçülü kvadrat matrislər qeyri-kommutativ halqa əmələ gətirir ki, bu da qeyri-kommutativ halqanın ən ümumi nümunələrindən biridir. Kvadrat matrisin determinantı kvadrat matrisin öyrənilməsi üçün əsas sayılan matrislə əlaqəli ədəddir; məsələn, kvadrat matris yalnız və yalnız sıfırdan fərqli determinanta malik olduqda və onun məxsusi qiymətləri çoxhədli determinantının kökləri olduqda tərs olur.

Həndəsədə matrislər həndəsi çevirmələri (məsələn, dönmələri) və koordinat dəyişmələrini təyin etmək və göstərmək üçün geniş istifadə olunur. Ədədi analizdəki bir çox hesablama məsələləri matris hesablamaya gətirilməklə həll edilir və bu, çox vaxt böyük ölçülü matrislərlə hesablamanı əhatə edir. Matrislər riyaziyyatın əksər sahələrində və bir çox elm sahələrində ya birbaşa, ya da həndəsə və ədədi analizdə istifadə yoluyla tətbiq olunur.

TərifRedaktə

Matris ədədlərin (və ya digər riyazi obyektlərin) düzbucaqlı yığımıdır. Matrisdəki ədəd, simvol və ya ifadələr onun ünsürləri və ya elementləri, ünsürlərdən ibarət üfüqi və şaquli sıralar isə müvafiq olaraq sətir və sütunlar adlanır.

Matrislər toplama və vurma kimi standart əməllərə tabedir. Ən geniş yayılmış F meydanı üzərindəki matris F elementlərinin düzbucaqlı yığımıdır. Ünsürləri uyğun olaraq həqiqi və ya kompleks ədədlər olan matris, həqiqi və ya kompleks matris adlanır.

ÖlçüRedaktə

Matrisin ölçüsü ona daxil olan sətir və sütunların sayı ilə xarakterizə olunur. Müsbət tam ədədlər olduqları müddətcə, bir matrisin (ümumi mənada) malik ola biləcəyi sətir və sütunların sayında heç bir məhdudiyyət yoxdur. m sətir və n sütundan ibarət matris m×n ölçülü matris və ya m-in n-ə matris adlanır. Məsələn, yuxarıdakı A matrisi 3×2 ölçülü matrisdir.

Yalnız bir sətirdən ibarət olan matris sətir vektoru, bir sütundan ibarət olan matris isə sütun vektoru adlanır. Eyni sayda sətir və sütuna malik olan matrisə kvadrat matris deyilir. Sonsuz sayda sətir və ya sütunu (və ya hər ikisi) olan matrisə sonsuz matris deyilir. Bəzi kontekstlərdə, məsələn, kompüter cəbri proqramlarında, sətirləri və ya sütunları olmayan, boş matrisi nəzərdən keçirmək faydalıdır.

Matris ölçüsünə ümumi baxış
Ad Ölçü Nümunə Təsvir
Sətir vektoru 1 x n   Bəzən vektoru göstərmək üçün istifadə edilən bir sətirli matris
Sütun vektoru n x 1   Bəzən vektoru göstərmək üçün istifadə edilən bir sütunlu matris
Kvadrat matris n x n   Eyni sayda sətir və sütuna malik matris, bəzən əksetmə, dönmə və ya sürüşmə kimi vektor fəzasından özünə xətti çevirməni göstərmək üçün istifadə olunur

İşarələməRedaktə

Matrislər, adətən, düzbucaqlı və ya dairəvi mötərizə daxilində yazılır:

 

Matrisin simvolik şəkildə göstərilmə xüsusiyyətləri bəzi yayğın meyllərlə birlikdə böyük ölçüdə dəyişir. Matrislər, adətən, böyük hərflərdən istifadə edilməklə (məsələn, yuxarıdakı nümunələrdə A kimi), buna uyğun olaraq ünsürlər isə iki işarəli aşağı indeksə malik kiçik hərflərlə (məsələn, a11 və ya a1,1) işarələnir. Bir çox müəlliflər matrisləri işarələmək üçün böyük hərflərdən istifadə etməklə yanaşı, matrisləri digər riyazi obyektlərdən daha da fərqləndirmək üçün xüsusi tipoqrafik üslubdan, adətən, qalın şriftdən (kursiv olmayan) istifadə edirlər. Alternativ işarələmə qalın şriftli və ya qalın şriftsiz dəyişənin adı ilə ikiqat alt xəttdən istifadəni özündə əks etdirir (məsələn,   kimi).

A matrisinin i-ci sətir və j-ci sütunundakı element bəzən matrisin i,j, (i,j) və ya (i,j)-ci elementi kimi nəzərdə tutulur və çox vaxt ai,j və ya aij kimi işarə olunur. Bu element üçün başqa bir işarələmə A[i,j] və ya Ai,j kimidir. Məsələn, aşağıdakı A matrisinin (1,3) elementi 5-dir (o həmçinin a13, a1,3, A[1,3] və ya A1,3 ilə işarə olunur):

 

Bəzən matrisin elementləri ai,j = f(i, j) şəklindəki düsturla müəyyən edilə bilər. Məsələn, aşağıdakı A matrisinin hər bir elementi aij = i − j düsturu ilə müəyyən edilir.

 

Bu halda matrisin özü bəzən düzbucaqlı və ya dairəvi mötərizə daxilində həmin düsturla müəyyən edilir. Məsələn, yuxarıdakı matris A = [i−j] və ya A = ((i−j)) kimi təyin olunur. Əgər matrisin ölçüsü m × n kimi olarsa, yuxarıda qeyd olunan f(i, j) düsturu istənilən i = 1, …, m və istənilən j = 1, …, n üçün etibarlıdır. Bunu ayrıca şəkildə, ya da aşağı indeksdə matrisin ölçüsünü (m × n) göstərməklə ifadə etmək olar. Məsələn, yuxarıdakı A matrisi 3 × 4 ölçülüdür və A = [i − j] (i = 1, 2, 3; j = 1, …, 4) və ya A = [i − j]3×4 kimi müəyyən edilə bilər.

Bəzi proqramlaşdırma dilləri m-×-n matrisini təsvir etmək üçün ikiqat indeksli massivlərdən (və ya massivlərin massivlərindən) istifadə edir. Bəzi proqramlaşdırma dilləri massivin indekslərinin nömrələnməsinə sıfırdan başlayır, bu halda m × n matrisinin ünsürləri 0 ≤ i ≤ m − 1 və 0 ≤ j ≤ n − 1 ilə indekslənir. Bu məqalədə sadalamanın 1-dən başlayan riyazi yazılışda daha çox yayılmış qaydaya əməl edilir.

Matrisdəki bütün sətir və ya sütunlara istinad etmək üçün bəzən ulduz işarəsindən istifadə edilir. Məsələn, ai,∗ A-nın i-ci sətirinə, a∗,j isə A-nın j-ci sütununa aiddir. m × n ölçülü bütün həqiqi matrislər çoxluğu çox zaman M(m,n) və ya Mmxn R kimi işarə olunur. Başqa bir meydan və ya R halqası üzərindəki bütün m × n matrislərinin çoxluğu oxşar şəkildə M(m,n,R) və ya Mmxn(R) işarə olunur. m = n olduqda, yəni matris kvadrat olan halda ölçü təkrarlanmır: M(n,R) və ya Mn(R). Çox vaxt M əvəzinə M-dən istifadə olunur.

Əsas əməllərRedaktə

Matrislər üzərində dəyişikliklər aparmaq üçün tətbiq oluna bilən bir sıra əsas əməllər mövcuddur ki, bunlara matrislərin toplanması, skalyara vurma, transponirə, matrislərin hasili, sıra əməllərialtmatris aiddir.

Toplama, skalyara vurma və transponirə etməRedaktə

Əməl Tərif Nümunə
Toplama
(A + B)i,j = Ai,j + Bi,j, burada 1 ≤ im və 1 ≤ jn.
 
Skalyara (ədədə) vurma c ədədi (abstrakt cəbr dilində skalyar da deyilir) və A matrisinin cA hasili A-nın hər bir elementi c-yə vurulmaqla hesablanır:
(cA)i,j = c · Ai,j.
 
Transponirə etmə
m x n ölçülü A matrisinin bütün sətirləri ilə sütunlarının yerlərinin dəyişdirilməsiylə (nömrələrini saxlamaqla) alınan n x m ölçülü AT (həmçinin Atr, At və ya A' ilə işarələnir) matrisi:
(AT)i,j = Aj,i.
 

Ədədlərin məlum xassələri matrislər üzərindəki əməllərə də şamil edilir: məsələn, toplama kommutativdir, yəni matrislərin cəmi toplananların ardıcıllığından asılı deyil: A + B = B + A. Transponirə etmə (cA)T = c(AT) və (A + B)T = AT + BT ilə ifadə olunduğu kimi toplama və skalyara vurma ilə uzlaşır.

Matrislərin vurulmasıRedaktə

 
İki matris hasilinin sxematik təsviri.

İki matrisin hasili o halda təyin edilir ki, soldakı matrisin sütunlarının sayı sağdakı matrisin sətirlərinin sayı ilə eyni olsun. m × n ölçülü A matrisinin n × p ölçülü B matrisinə hasili hədləri

 

kimi təyin olunan AB matrisinə deyilir. Burada 1 ≤ im və 1 ≤ jp. Məsələn, hasildə altından xətt çəkilmiş 2340 elementi aşağıdakı kimi hesablanır

(2 × 1000) + (3 × 100) + (4 × 10) = 2340:

 

Matrislərin hasili (AB)C = A(BC) (assosiativlik) və (A + B)C = AC + BC, eləcə də C(A + B) = CA + CB (sola və sağa nəzərən distributivlik) qanununa cavab verir, bu zaman matrislərin ölçüsü elə olmalıdır ki, müxtəlif hasillər təyin oluna bilsin.

AB hasili BA təyin edilmədən müəyyən edilə bilər, yəni A və B müvafiq olaraq mxnnxk ölçülü matrislərdirsə və m ≠ k olarsa. Hər iki hasil müəyyən edilsə belə, onların ümumiyyətlə bərabər olmasına ehtiyac yoxdur, yəni:

ABBA

Başqa sözlə, hasili vuruqların sırasından asılı olmayan (rasional, həqiqi və ya kompleks) ədədlərdən fərqli olaraq, matrislər vurmaya nəzərən kommutativ deyil.

 

halbuki

 

Matrislərin adi formada vurulması ilə yanaşı, vurula bilən matrislər üzərində daha az istifadə olunan Adamar və Kroneker hasili kimi digər əməllər də mövcuddur. Onlar Silvestr tənliyi kimi matris tənliklərinin həlli zamanı ortaya çıxır.

Sətir əməlləriRedaktə

Üç növ sətir əməli var:

  1. sətirlərin toplanması, yəni bir sətir digəri ilə toplana bilər;
  2. sətirlərin vurulması, yəni sətirin bütün elementlərini sıfırdan fərqli sabitə vurmaq olar;
  3. sətirlərin yerdəyişməsi, yəni matrisin iki sətirini dəyişdirmək olar.

Bu əməllər xətti tənliklərin həlli və matrisin tərsinin tapılması da daxil olmaqla müxtəlif şəkillərdə istifadə olunur.

AltmatrisRedaktə

Hər hansı bir matrisin altmatrisi istənilən sətir və/və ya sütunlar yığımının silinməsi ilə əldə edilir.

Məsələn, aşağıdakı 3x4 ölçülü matrisin 3-cü sətir və 2-ci sütununu silməklə 2x3 ölçülü altmatris düzəltmək olar:

 

Matrisin minor və cəbri tamamlayıcıları müəyyən altmatrislərin determinantını hesablamaqla tapılır.

Əsas altmatris müəyyən sətir və sütunları silməklə əldə edilən kvadrat altmatrisdir. Onun tərifi müəllifdən müəllifə dəyişir. Bəzi müəlliflərə görə, əsas altmatris, qalan sətir indeksləri çoxluğu ilə qalan sütun indeksləri çoxluğu eyni olan altmatrisdir. Digər müəlliflər əsas matrisi bəzi k ədədləri üçün ilk k sətir və sütunundan geridə qalanlardan ibarət matris kimi təyin edir; bu tip submatris həm də aparıcı əsas submatris adlanır.

Xətti tənliklərRedaktə

Matrislər bir çox xətti tənlikləri, yəni xətti tənliklər sistemini yığcam şəkildə yazmaq və onlarla işləmək üçün istifadə edilə bilər. Məsələn, A mxn ölçülü matris, x x1, x2, …, xn dəyişənlərindən ibarət sütun vektoru (yəni n×1 ölçülü matris), b isə m×1 ölçülü sütun vektorudursa, onda

 

matris tənliyi

 

xətti tənliklər sisteminə ekvivalentdir.

Bütün bu tənlikləri ayrı-ayrılıqda yazmaq əvəzinə matrislərdən istifadə etməklə daha yığcam şəkilə salmaq və həll etmək olar. Əgər n = m və tənliklər sərbəst olarsa, bunu aşağıdakı şəkildə yazmaqla tamamlamaq olar

 

burada A−1 A matrisinin tərsidir.

Əgər A-nın tərsi yoxdursa, onun ümumiləşdirilmiş tərsindən istifadə etməklə həllər (əgər varsa) tapıla bilər.

Xətti çevirmələrRedaktə

Matrislər və matrislərin hasili xətti çevirmələrlə əlaqəli olduqda onların əsas cəhətləri ortaya çıxır. mxn ölçülü həqiqi A matrisi Rn çoxluğundakı hər bir x vektorunu Rm çoxluğunda vektor olan Ax (matris) hasilinə qarşı qoyan RnRm xətti çevirməsinə səbəb olur. Digər tərəfdən, hər bir f: RnRm xətti çevirməsi mxn ölçülü unikal A matrisindən yaranır: aşkar şəkildə A-nın (i, j)-elementi f(ej)-nin i-ci koordinatıdır (burada ej = (0,…,0,1,0,…,0) j-ci mövqedə 1 və başqa yerlərdə 0 qiymətini alan vahid vektordur). Bu zaman deyilir ki, A matrisi f xətti çevirməsini təmsil edir, A isə f-in çevirmə matrisi adlanır.

Məsələn, 2×2 ölçülü

 

matrisinə vahid kvadratın təpələri (0, 0), (a, b), (a + c, b + d) və (c, d) olan paraleloqrama çevrilməsi kimi baxıla bilər. Sağda təsvir olunan paraleloqram A-nı növbə ilə    sütun vektorlarının hər birinə vurmaqla əldə edilir. Bu vektorlar vahid kvadratın təpə nöqtələrini müəyyən edir.

Aşağıdakı cədvəl R2 ilə əlaqəli xətti çevirmələr vasitəsilə 2×2 ölçülü müxtəlif həqiqi matrisləri nümayiş etdirir. Mavi rəngli orijinal yaşıl tor və fiqurlara çevrilir. Koordinat başlanğıcı (0,0) qara nöqtə ilə qeyd olunmuşdur.

Matrislər və xətti çevirmələrarasında birəbir uyğunluq (biyeksiya) altında matrislərin vurulması çevirmələrin kompozisiyasına uyğun gəlir: əgər kxm ölçülü matris B başqa bir xətti çevirməni təmsil edirsə: RmRk, onda gf kompozisiyası BA ilə ifadə edilir, çünki

(gf) (x) = g(f(x)) = g(Ax) = B(Ax) = (BA)x.

Son bərabərlik matrislərin vurmaya görə assosiativliyindən irəli gəlir.

A matrisinin ranqı matrisin xətti sərbəst sətir vektorlarının maksimum sayıdır və bu, xətti sərbəst sütun vektorlarının maksimum sayına bərabərdir. Ekvivalent olaraq bu, A ilə ifadə olunan xətti çevirmənin obrazının ölçüsüdür. Ranq-boşluq teoremi göstərir ki, matrisin nüvəsinin ölçüsü və ranqı matrisin sütunları sayına bərabərdir.

Kvadrat matrisRedaktə

Kvadrat matris bərabər sayda sətir və sütuna malik matrisdir. nxn ölçülü matris n tərtibli kvadrat matris adlanır. Tərtibləri bərabər olan istənilən iki kvadrat matris toplanıla və vurula bilər. aii elementləri kvadrat matrisin baş diaqonalını təşkil edir. Onlar matrisin yuxarı sol küncünü aşağı sağ küncü ilə birləşdirən xəyali xətt üzrə yerləşirlər.

Başlıca növləriRedaktə

Diaqonal və üçbucaq matrisRedaktə

Əgər A-nın baş diaqonaldan aşağıda duran bütün elementləri sıfırdırsa, A yuxarı (yaxud sağ) üçbucaq matris adlanır. Eynilə, A-nın baş diaqonaldan yuxarıda duran bütün elementləri sıfırdırsa, A aşağı (yaxud sol) üçbucaq matris adlanır. Baş diaqonal elementlərindən başqa qalan elementlər sıfırdırsa, A diaqonal matris adlanır.

Vahid matrisRedaktə

n ölçülü vahid matris baş diaqonaldakı bütün elementləri 1-ə, digər elementləri isə 0-a bərabər olan nxn ölçülü matrisdir. Məsələn,

 

Bu n tərtibli kvadrat matrisdir, həmçinin diaqonal matrisin xüsusi növüdür. Ona vahid matrisi deyilir, çünki hər hansı matrisin onunla hasili elə həmin matrisi verir, yəni mxn ölçülü hər hansı A matrisi üçün

AIn = ImA = A

bərabəriyi doğrudur.

Vahid matrisin sıfırdan fərqli skalyarla hailinə skalyar matris deyilir. Əgər matrisin elementləri meydandan gəlirsə, skalyar matrislər matrislərin vurulması altında qrup təşkil edir, yəni meydanın sıfırdan fərqli elementlərinin multiplikativ qrupuna izomorfdur.

Simmetrik və ya çəp-simmetrik matrisRedaktə

Transponirə edildikdə özü alınan, yəni A=AT olan A matrisinə simmetrik matris deyilir. Bunun əvəzinə, A= −AT olduqda, A matrisinə çəpsimmetrik matris deyilir. Kompleks matrislərdə simmetriya çox vaxt A=A bərabərliyini təmin edən Ermit matrisi anlayışıyla əvəz olunur, burada ulduz işarəsi A matrisinin Ermit və ya transponirə edilmiş kompleks qoşmasını bildirir.

Spektral teoremə görə, həqiqi simmetrik matrislər və kompleks Ermit matrisləri məxsusi bazisə malikdir; yəni hər bir vektor məxsusi vektorların xətti kombinasiyası kimi ifadə edilə bilər. Hər iki halda bütün məxsusi qiymətlər həqiqidir. Bu teorem sonsuz sayda sətir və sütuna malik matrislərlə əlaqəli olan sonsuz ölçülü hallar üçün ümumiləşdirilə bilər (aşağıya baxın).

Tərs matris və onun tərsiRedaktə

Aşağıdakı bərabərliyi ödəyən B matrisi varsa, A kvadrat matrisinə tərsi olan və ya qeyri-sinqulyar matris deyilir:

AB = BA = In

burada In baş diaqonalında 1-lər və başqa yerlərdə 0-lar yerləşən n×n ölçülü vahid matrisdir. Əgər B mövcuddursa, o yeganədir və A-nın tərs matrisi adlanır, həmçinin A−1 ilə göstərilir.

Müəyyən matrisRedaktə

Simmetrik həqiqi A matrisi, o zaman müsbət-müəyyən adlanır ki, onunla əlaqəli

f (x) = xTA x

kvadratik forması Rn-dəki sıfırdan fərqli hər bir x vektoru üçün müsbət qiymətlər alsın. f (x) yalnız mənfi qiymətlər aldıqda, A-ya mənfi-müəyyən; həm mənfi, həm də müsbət qiymətlər aldıqda isə qeyri-müəyyən matris deyilir. Əgər f kvadratratik forması yalnız mənfi olmayan qiymətlər (müsbət və ya sıfır) alırsa, simmetrik matris müsbət-yarımüəyyən adlanır (əksinə olduqda isə mənfi-yarımüəyyən); deməli, matris nə müsbət-yarımmüəyyən, nə də mənfi-yarımmüəyyən olmadıqda qeyri-müəyyən olur.

Simmetrik matris, o halda müsbət-müəyyən olur ki, onun bütün məxsusi qiymətləri müsbətdir, yəni matris müsbət-yarı müəyyəndir və onun tərsi var. Sağdakı cədvəldə 2x2 ölçülü matrislər üçün iki mümkün hal göstərilmişdir.

Sərbəst dəyişənin yerinə iki müxtəlif vektor yazılarsa A ilə əlaqəli bixətti forma alınar:

BA (x, y) = xTAy

Matrislərin kompleks olması halında da eyni terminologiya və nəticə tətbiq edilir, simmetrik matris, kvadratik forma, bixətti formaxT çevrilməsi müvafiq olaraq Ermit matris, Ermit forma, bir yarım-xətti forma və xH qoşma çevrilməsi ilə əvəz olunur.

Ortoqonal matrisRedaktə

Sütun və sətirləri ortoqonal vahid vektorlar (yəni ortonormal vektorlar) olan həqiqi elementli kvadrat matrisə ortoqonal matris deyilir.

Ekvivalent olaraq, A matrisinin transponirəsi onun tərsinə bərabərdisə, o ortoqonaldır:

AT=A−1

hansı ki,

 

burada In n ölçülü vahid matrisdir.

Ortoqonal A matrisi mütləq şəkildə tərsi alına bilən (A−1 = AT), unitar (A−1 = A*) və normaldır (A*A = AA*). İstənilən ortoqonal matrisin determinantı ya +1, ya da −1-dir. Determinantı +1 olan ortoqonal matrisə xüsusi ortoqonal matris deyilir. Xətti çevirmə olaraq, determinantı +1 olan hər bir ortoqonal matris əksetməsiz (refleksiyasız) xalis dönmədir, yəni çevirmə çevrilmiş strukturun oriyentasiyasını saxlayır, determinantı −1 olan hər bir ortoqonal matris isə oriyentasiyanı tərsinə çevirir, yəni xalis əksetmə və (ehtimal ki, sıfır) dönmənin kompozisiyasıdır. Vahid matrislərin determinantı 1-ə bərabər olur və onlar sıfır bucaq qədər xalis dönmələrdir.

Ortoqonal matrisin kompleks analoqu unitar matrisdir.

Başlıca əməllərRedaktə

İzRedaktə

A kvadrat matrisinin izi (tr A) dedikdə, onun diaqonal elementlərinin cəmi başa düşülür. Matrislərin vurulması yuxarıda qeyd edildiyi kimi kommutativ olmasa da, iki matrisin hasilinin izi vuruqların sırasından asılı deyil:

tr(AB) = tr(BA).

Bu bilavasitə matrislərin vurulmasından irəli gəlir:

 

Buradan belə çıxır ki, ikidən artıq matrisin hasilinin izi matrislərin siklik permutasiyalarından asılı deyil, lakin bu, ümumiyyətlə, ixtiyari permutasiyalara şamil edilmir (məsələn, ümumi halda tr(ABC) ≠ tr(BAC)). Həmçinin, matrisin izi onun transponirəsinin izinə bərabərdir:

tr(A) = tr(AT).

DeterminantRedaktə

Kvadrat A matrisinin determinantı (det(A) və ya |A|) həmin matrislə əlaqəli ədəddir. Hər hansı bir matrisin tərsi yalnız və yalnız onun determinantı sıfırdan fərqli olduqda mövcud ola bilər. Onun mütləq qiyməti vahid kvadratın (və ya kubun) obrazının sahə (R2-də) və ya həcminə (R3-də) bərabər olub, işarəcə müvafiq xətti çevirmənin oriyentasiyasına uyğundur: determinant yalnız və yalnız oriyentasiya qorunub saxlanılan zaman müsbət olur.

2x2 ölçülü matrisin determinantı aşağıdakı şəkildə təyin olunur:

 

3x3 ölçülü matrislərin determinantı 6 həddə malik olur (Sarrius qaydası). Daha uzun Leybnis düsturu bu iki düsturu bütün ölçülər üçün ümumiləşdirir.

Kvadrat matrislər hasilinin determinantı onların determinantları hasilinə bərabərdir:

det(AB) = det(A) · det(B).

Determinantın hər hansı bir sətir (sütun) elementlərini müəyyən bir ədədə vurub başqa sətrin (sütunun) uyğun elementləri ilə topladıqda onun qiyməti dəyişməz. Determinantın iki sətrinin və ya iki sütununun yerlərini dəyişsək, onun yalnız işarəsi dəyişər. Bu əməllərdən istifadə etməklə istənilən matrisi aşağı (və ya yuxarı) üçbucaq matrisə çevirmək olar və belə matrislər üçün determinant baş diaqonal elementlərinin hasilinə bərabərdir; bu hər hansı matrisin determinantını hesablamaq üçün bir üsul təqdim edir. Nəhayət, Laplas teoremi determinantı minorlar, yəni daha kiçik ölçülü matrislərin determinantları vasitəsilə ifadə edir. Bu genişlənmə determinantların rekursiv tərifi üçün istifadə edilə(başlanğıc hal kimi onun yeganə elementi olan 1x1 ölçülü matrisin determinantını və ya hətta 1-ə bərabər olan 0x0 ölçülü matrisin determinantını götürməklə), beləliklə bunun Leybnis düsturuna ekvivalent olduğu görülə bilər. Determinantlardan Kramer qaydasından istifadə edərək xətti sistemləri həll etmək üçün istifadə edilə bilər, burada iki əlaqəli kvadrat matrisin determinantlarının bölünməsi sistemin dəyişənlərinin hər birinin qiymətinə bərabərdir.

Məxsusi qiymətlər və məxsusi vektorlarRedaktə

λ ədədi və sıfırdan fərqli v vektoru

 

bərabərliyini ödədikdə, müvafiq olaraq onlara A-nın məxsusi qiymətiməxsusi vektoru deyilir. λ ədədi n×n ölçülü A matrisinin məxsusi qiymətidir, o halda və yalnız A−λIn o ifadəsinin tərsi olmasın. Bu aşağıdakı bərabərliyə ekvivalentdir:

 

det(XInA) determinantının qiymətləndirilməsi ilə verilən qeyri-müəyyən X-dəki pA çoxhədlisi A-nın xarakteristik çoxhədlisi adlanır. Bu n dərəcəli monik çoxhədlidir. Buna görə də pA(λ) = 0 çoxhədli tənliyinin ən çoxu n müxtəlif həlli var, belə ki, matris məxsusi qiymətlərə malikdir. A-nın elementləri həqiqi olsa belə, onlar kompleks ola bilər. Keli-Hamilton teoreminə görə, pA(A) = 0 olur, yəni matris öz xarakteristik çoxhədlisi ilə əvəz edildikdə nəticə sıfır matris olur.

Hesablama aspektləriRedaktə

Matris hesablamaları çox vaxt müxtəlif üsullarla həyata keçirilə bilər. Bir çox problem həm birbaşa alqoritmlər, həm də iterativ yanaşmaların köməyilə həll edilə bilər. Məsələn, kvadrat matrisin məxsusi vektorları, n sonsuzluğa yaxınlaşan zaman məxsusi vektora yaxınlaşan xn vektorlar ardıcıllığını tapmaqla əldə edilə bilər. Hər bir konkret problemə görə ən uyğun alqoritmi seçmək üçün bütün mövcud alqoritmlərin həm effektivliyini, həm də dəqiqliyini müəyyən etmək vacibdir. Bu məsələləri öyrənən sahə ədədi xətti cəbr adlanır. Digər ədədi vəziyyətlərdə olduğu kimi, iki əsas cəhət alqoritmlərin kompleksliyi və ədədi stabilliyidir.

Alqoritmin mürəkkəbliyini müəyyən etmək yuxarı hədləri tapmaq və ya bəzi alqoritmi yerinə yetirmək üçün skalyarların toplanması və vurulması kimi neçə elementar əməlin, məsələn, matrislərin vurulmasının zəruri olduğunun təxminlərini tapmaq deməkdir. Yuxarıda verilmiş tərifdən istifadə edərək iki nxn ölçülü matrisin hasilini hesablamaq üçün n3 vurma lazımdır, çünki hasilin n2 elementlərindən hər hansı biri üçün n vurma lazımdır. Strassen alqoritmi bu "sadəlövh" alqoritmi üstələyir; ona yalnız n2.807 vurma lazımdır. Təkmilləşdirilmiş yanaşma hesablama cihazlarının spesifik xüsusiyyətlərini də özündə birləşdirir. Bir çox praktik hallarda əlaqəli matrislər haqqında əlavə bilgilər məlum olur. Mühüm hal seyrək matrislərlə, yəni elementlərinin çoxu sıfır olan matrislərlə bağlıdır. Ax = b şəklindəki xətti tənliklər sistemini seyrək A matrisinə görə həll etmək üçün qoşma qradiyent metodu kimi xüsusi uyğunlaşdırılmış alqoritmlər mövcuddur.

Giriş qiymətlərindəki kiçik sapmalar nəticədə böyük sapmalara səbəb olmursa, alqoritm kobud formada desək, ədədi stabildir. Məsələn, Laplas teoremi vasitəsilə matrisin tərsinin hesablanması (adj(A) A-nın qarşılıqlı matrisini ifadə edir)

A−1 = adj(A) / det(A)

matrisin determinantı çox kiçik olarsa, nəzərə çarpan yuvarlaqlaşdırma xətalarına səbəb ola bilər. Matrisin norması xətti cəbri məsələlərin şərtləndirilməsini, məsələn, matrisin tərsini hesablamaq üçün istifadə edilə bilər.

Əksər kompüter proqramlaşdırma dilləri massivləri dəstəkləyir, lakin matrislər üçün daxili əmrlərlə tərtib edilməyib. Bunun əvəzinə, mövcud xarici kitabxanalar, demək olar ki, bütün hazırda istifadə olunan proqramlaşdırma dillərində massivlərdə matris əməliyyatları təmin edir. Matris manipulyasiyası kompüterlərin ilk ədədi tətbiqləri arasında idi. Orijinal Dartmouth BASIC -də 1964-cü ildə ikinci buraxılışından etibarən massivlər üzərində matris arifmetikası üçün daxili əmrlər var idi. Hələ 1970-ci illərdə HP 9830 kimi bəzi mühəndis stolüstü kompüterlərində matrislər üçün BASIC əmrləri əlavə etmək üçün ROM kartricləri var idi. APL kimi bəzi kompüter dilləri matrisləri manipulyasiya etmək üçün nəzərdə tutulmuşdur və matrislərlə hesablamalara kömək etmək üçün müxtəlif riyazi proqramlardan istifadə edilə bilər.

DekompozisiyaRedaktə

Matrisləri daha rahat formada göstərmək üçün bir neçə üsul var. Bunlar, ümumiyyətlə, matrisin dekompozisiyası və ya vuruqlara ayırma üsulu adlanır. Bütün bu üsulların marağı ondan ibarətdir ki, onlar sözügedən matrislərin determinantı, ranqı və ya tərsi kimi müəyyən xassələri qoruyub saxlayırlar ki, bu kəmiyyətlər çevirmənin tətbiqindən sonra hesablana bilsin və ya bəzi növ matrislər üçün müəyyən matris əməllərinin həyata keçirilməsi alqoritmik olaraq daha asan olsun.

Aşağı (L) və yuxarı üçbucaqlı matrislərin (U) məhsulu kimi LU parçalanma vuruqları matrisləri. Bu parçalanma hesablandıqdan sonra xətti sistemlər irəli və geri əvəzetmə adlanan sadə texnika ilə daha səmərəli şəkildə həll edilə bilər. Eyni şəkildə, üçbucaqlı matrislərin tərslərini hesablamaq alqoritmik olaraq daha asandır. Qauss üsulu oxşar alqoritmə əsaslanır; istənilən matrisi sətir pilləli formaya çevirir. Hər iki üsul matrisi sətir və ya sütunların dəyişdirilməsinə uyğun gələn uyğun elementar matrislərə vurmaqla davam edir və bir sətiri müəyyən ədədə vurub digər sətirlə toplanılır. Sinqulyar ayrılma istənilən A matrisini UDV hasili kimi ifadə edir, burada UV unitar, D isə diaqonal matrisdir. Məxsusi dekompozisiya və ya diaqonallaşdırma A-nı VDV−1 hasili kimi ifadə edir, burada D diaqonal, V isə uyğun tərsi alına bilən matrisdir. Əgər A matrisini bu formada yazmaq mümkündürsə, ona diaqonallaşdırıla bilən matris deyilir. Daha ümumi şəkildə və bütün matrislərə aid olan Jordan ayrılması matrisi normal formaya (Jordan formasına) çevirir, yəni yalnız sıfırdan fərqli elementləri əsas diaqonalda yerləşdirilən A-nın λ1-dən λn-ə qədər olan məxsusi qiymətləri olan matrisləri, sağda göstərildiyi kimi əsas diaqonalın üstündə yerləşdirilir və ola bilsin ki, ünsürlər birbaşa baş diaqonalın üzərində birinə bərabər olan matrislərdir. Məxsusi dekompozisiyanı nəzərə almaqla, A-nın n-ci dərəcəsini (yəni, matrislərin n dəfə özünə vurulması) aşağıdakı üsulla hesablamaq olar

An = (VDV−1)n = VDV−1VDV−1VDV−1 = VDnV−1

Və diaqonal matrisin qüvvətini diaqonal elementlərinin müvafiq qüvvətləri götürməklə hesablamaq olar, bu, A matrisinin eksponentini hesablamaqla müqayisədə daha asandır. Bu, xətti diferensial tənliklərin, matris loqarifmlərinin və matrislərin kvadrat köklərinin həllində çox vaxt ehtiyac duyulan eksponensial eA matrisini hesablamaq üçün istifadə edilə bilər. Ədədi mənada gözlənilməz hallardan uzaq durmaq üçün Şur dekompozisiyası kimi əlavə alqoritmlərdən istifadə edilə bilər.

Abstrakt cəbri aspektlər və ümumiləşdirmələrRedaktə

Matrislər müxtəlif yollarla ümumiləşdirilə bilər. Abstrakt cəbr daha ümumi sahələrə və ya hətta halqalara daxil olan matrislərdən istifadə edir, xətti cəbr isə xətti çevirmələr anlayışı daxilində matrislərin xassələrini sistemləşdirir. Sonsuz sayda sütun və sətirlərə malik matrisləri nəzərdən keçirmək mümkün olur. Başqa bir uzantı, vektorlardan fərqli olaraq, daha yüksək ölçülü ədədlər yığımı kimi baxıla bilən tenzorlardır, bunlar çox vaxt ədədlərin ardıcıllığı kimi həyata keçirilə bilər, matrislər isə düzbucaqlı və ya ikiölçülü ədədlər yığımıdır. Müəyyən tələblərə tabe olan matrislər matris qrupları kimi tanınan qrupları meydana gətirirlər. Eynilə müəyyən şərtlərdə matrislər matris halqaları kimi tanınan halqalar əmələ gətirir. Matrislərin hasilinin ümumi kommutativ olmasa da, müəyyən matrislər matris meydanları kimi tanınan meydanları əmələ gətirir.

Daha ümumi elementlərə malik matrislərRedaktə

Bu məqalədə elementləri həqiqi və ya kompleks ədədlər olan matrislərə diqqət yetirilir. Bununla belə, həqiqi və ya kompleks ədədlərdən başqa, daha ümumi elementlərə malik olan matrisləri də nəzərdən keçirmək olar. Ümumiləşdirmənin ilk addımı kimi, R və ya C yerinə hər hansı bir meydan, yəni toplama, çıxma, vurma və bölmə əməlləri təyin edildiyi və düzgün aparıldığı çoxluq, məsələn, rasional ədədlər və ya sonlu meydanlar istifadə edilə bilər. Məsələn, kodlaşdırma nəzəriyyəsində sonlu meydanlar üzərindəki matrislərdən istifadə edilir. Məxsusi qiymətlər çoxhədlinin kökləri kimi nəzərə alındıqda, onlar yalnız matrisin elementlərindən daha böyük meydanda mövcud ola bilər; məsələn, real elementləri olan matris halında onlar kompleks ola bilər. Matrisin elementlərini daha böyük meydanın elementləri kimi yenidən şərh etmək imkanı (məsələn, həqiqi matrisə elementləri hamısı həqiqi olan kompleks matris kimi baxmaq) sonra hər kvadrat matrisin tam məxsusi qiymətlərinə malik olmasını nəzərdən keçirməyə imkan verir. Alternativ olaraq, əvvəldən yalnız C kimi cəbri qapalı meydanda elementləri olan matrisləri nəzərdən keçirmək olar.